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a b s t r a c t

In this work, the polarization efficiency is examined for the technique of thermal sampling used in

thermally stimulated depolarization current measurements, for the case where a very narrow

temperature polarization window is used at the polarization temperature of Tp. It is found that this

has appreciable values only along a straight line in the E�ln t0 plane. The selectivity of the method is

expressed by the widths DE� 3kTp and D ln t0 � 3 of the distributions of the E and ln t0 values of the

dipoles polarized by thermal sampling. A possible interpretation is also offered of the phenomenon

known as compensation law, based on the selectivity characteristics of the thermal sampling technique

examined in this work.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

The method of thermal sampling, or fractional polarization, is
used in TSDC measurements, in order to isolate peaks within
narrow ranges of activation energies E and pre-exponential time
constants t0, in samples where these parameters are distributed
(see e.g. [1,2]). In the present work, an expression is derived for
the effective fraction of dipoles polarized, as a function of the
distributed parameters E and t0. The selectivity of the method is
also determined, showing the range of E and t0 values in the
dipoles polarized by a thermal sampling run. Based on the
theoretical results for the selectivity of the method, a possible
interpretation will be offered of the experimentally observed
effect known as ‘‘compensation law’’. This interpretation rein-
forces the opinion that the effect is due to the measurement
technique rather than to the molecular structure of the materials
studied.

2. The polarization efficiency during the thermal sampling
procedure

We consider a single relaxation mechanism, characterized by
activation energy E and pre-exponential time constant t0. The

relaxation time for this mechanism at an absolute temperature
T is given by the Arrhenius expression

tðTÞ ¼ t0 exp
E

kT

� �
; ð1Þ

where k is Boltzmann’s constant. If a sample is being polarized in
an electric field of intensity F, its polarization density at time t,
PðtÞ, satisfies the Debye equation (see e.g. [3,4])

dP

dt
¼

Pe�P

t ; ð2Þ

with

Pe ¼
gkFp2N

kT
; ð3Þ

where g is a geometrical factor, equal to 1/3 for free rotating
dipoles, kF is the local electric field at the position of the dipoles, p

is the dipole moment of the dipoles and N their concentration. Pe

is the equilibrium polarization density and is the value reached
with field F at temperature T after a very long time.

If the polarization density is initially equal to zero, at time t it
will be, according to Eq. (2),

PðtÞ ¼ exp �

Z t

0

dt

t

� �Z t

0

Pe

t
exp

Z t

0

dt

t

� �
dt: ð4Þ

Eq. (4) can be integrated if TðtÞ and FðtÞ are given.
We will assume a constant cooling rate �dT=dt¼ q, and that a

constant electric field is applied at t¼ 0, when the temperature is
T0. We define a� E=kqt0, and change the variable to e¼ E=kT ,
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which at T ¼ T0 has the value of e0 ¼ E=kT0. Then, for as long as the
field F is appliedZ t

0

dt

t ¼ a
Z e

e0

e�e

e2
de¼ a

Z 1
e0

e�e

e2
de�a

Z 1
e

e�e

e2
de¼ a E2ðe0Þ

e0
�

E2ðeÞ
e

� �
;

ð5Þ

in terms of the second exponential integral, a transcendental
function defined by (see e.g. [5])

E2ðeÞ � e
Z 1
e

e�z

z2
dz: ð6Þ

A rational approximation for this function, which is widely used in
this work, is [5,6]

eeE2ðeÞ ¼
0:99997eþ3:03962

e2þ5:03637eþ4:19160
þDðeÞ; ð7Þ

where jDðeÞjo10�7 for eZ10.
Using Eq. (5) in Eq. (4), the latter becomes

PðeÞ ¼ gkFp2N

kqt0
exp

a
e E2ðeÞ
h i Z e

e0

de
e exp �e�ae E2ðeÞ

h i
: ð8Þ

This expression can be used for particular cooling schemes [7].
If the sample is cooled down to very low temperatures, the

exponential outside the integral in Eq. (8), which does not depend
on the electric field, becomes unity, and

PðeÞ ¼ gkFp2N

kqt0

Z e

e0

de
e exp �e�ae E2ðeÞ

h i
: ð9Þ

In thermal sampling, if the field is applied at t¼ t1 ¼ 0,
when the temperature of the sample is Tp1, corresponding to
ep1 ¼ E=kTp1, and removed at t¼ t2, when the temperature of
the sample is Tp2, corresponding to ep2 ¼ E=kTp2 (Fig. 1), the
integration in Eq. (9) must be between ep1 and ep2, and the final
polarization density is

P0 ¼
gkFp2N

kqt0

Z ep2

ep1

de
e exp �e�ae E2ðeÞ

h i
: ð10Þ

We can express the polarization efficiency [8], defined as the
effective fraction of dipoles which have been polarized,

Z� P0

pN
; ð11Þ

as

Z¼ gkFp

kqt0

Z ep2

ep1

de
e exp �e�ae E2ðeÞ

h i
; ð12Þ

which we may write explicitly as

Z¼ gkFp

kqt0

Z Tp1

Tp2

dT

T
exp �

E

kT
�

T

qt0
E2

E

kT

� �� �
: ð13Þ

We will limit our arguments to the case of a very narrow
polarization window DTp ¼ Tp1�Tp2. In this case, we can take
Tp1 � Tp2 ¼ Tp and the integrand in Eq. (13) remains approximately
constant, having its value at Tp. In the limit of a delta-function

polarization window, the polarization window is narrowed while
the strength of the electric field is increased, so that the product
FDTp remains constant. Eq. (13) can now be written as

Z¼ gkFp

kqt0

DTp

Tp
exp �

E

kTp
�

Tp

qt0
E2

E

kTp

� �� �
: ð14Þ

For a given narrow polarization window DTp around Tp, the
polarization efficiency Z gives the effective fraction of dipoles
having activation energy E and pre-exponential time constant t0,
which have been polarized.

3. Numerical study of the polarization efficiency function

The polarization efficiency (14) can be expressed as

Z¼ gkFp

k

DTp

T2
p

h; ð15Þ

where the reduced polarization efficiency h is a function of the
dimensionless variables

ep �
E

kTp
and l�

Tp

qt0
; ð16Þ

defined as

h� l exp½�ep�lE2ðepÞ�: ð17Þ

For a given temperature of polarization Tp, the function h depends
on the activation energy E and the pre-exponential time constant
t0 of the polarized dipoles, through the corresponding variables ep

and l.
Fig. 2a shows plots of h as a function of lnl, for various values

of ep. Asymmetrical bell-shaped peaks are seen, whose widths
appear to be fairly constant, and whose heights appear to have a
linear dependence on both ep and the values of lnlm at which
their maxima occur. These indications can be verified by
calculation, as shown in Figs. 2b–d.

Fig. 2b shows the linear dependence between the value epm of
ep at which h has maximum value and the value lnlm of lnl at
which this maximum occurs. The linearity is expressed by the
equation lnlm ¼ 2:39ð6Þþ1:033ð2Þepm, ðr¼ 0:99995Þ. The number
in parentheses gives the standard deviation of the number
preceding the parentheses at the accuracy of the corresponding
last figures [e.g. 2.39(6) stands for 2.3970.06]. The value of r

given is the coefficient of correlation, showing how good the fit is
to a straight line.

Fig. 2c shows the linear relationship between the maximum
value hm of h, and the value of epm at which the maximum
appears. The straight line fitted to this is given by hm ¼

0:686ð3Þþ0:3687ð1Þepm, ðr¼ 1:00000Þ.
Fig. 2d shows the linear relationship between the maximum

value hm of h, and the value lnlm of lnl at which the maximum
appears. The straight line fitted to this is given by hm ¼

�0:165ð20Þþ0:3570ð5Þ lnlm, ðr¼ 0:99996Þ.
A three-dimensional plot of h as a function of lnl is given in Fig. 3

for various values of ep. It is seen that h has appreciable values only
along and near a straight line on the ep�lnl plane. The narrowness
of this ‘‘ridge’’ shows the selectivity of the thermal sampling
technique, a topic which will be examined below.

Fig. 1. The mode of variation of the temperature T and the polarizing electric field

F with time t, commonly used in the technique of thermal sampling.
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Fig. 4a shows plots of h as a function of ep, for various values of
l. Similar linear relationships are seen to exist, as in the case of
Fig. 2a.

Fig. 4b shows the values epm of ep for which h is maximum for a
given lnl, and the linear relationship between epm and lnl. The

straight line fitted to this is given by epm ¼�2:04ð6Þþ0:960ð2Þ lnl,
ðr¼ 0:99993Þ.

Fig. 4c shows the linear relationship between the maximum
value hm of h, and the value of lnl at which the maximum
appears. The straight line fitted to this is given by
hm ¼�0:09ð2Þþ0:3545ð6Þ lnl, ðr¼ 0:99995Þ.

Fig. 4d shows the linear relationship between the maximum
value hm of h, and the value epm of ep at which the maximum
appears. The straight line fitted to this is given by
hm ¼ 0:664ð4Þþ0:3692ð1Þepm, ðr¼ 1:00000Þ.

Finally, a three-dimensional plot of h as a function of e, for
various values of l is given in Fig. 5. Again, the selectivity of the
thermal sampling technique is obvious.

4. The selectivity in In s0 values, of the thermal sampling
technique

Let us concentrate on a particular value of activation energy, E0,
and examine how Z varies with t0. To find the maximum value of
Z for this particular energy, we examine

@Z
@t0
¼
gkFp

kq

DTp

Tp
�

1

t2
0

þ
Tp

qt3
0

E2
E0

kTp

� �" #
exp �

E0

kTp
�

Tp

qt0
E2

E0

kTp

� �� �
:

ð18Þ

Fig. 2. (a) The dependence on lnl of the polarization efficiency, as expressed by h, for various values of ep. (b) The values lnlm of lnl, for which h is maximum for a given ep

equal to epm, and the linear relationship between lnlm and epm. (c) The linear relationship between the maximum value hm of h, and the value of epm at which the

maximum appears. (d) The linear relationship between the maximum value hm of h, and the value lnlm of lnl at which the maximum appears.

Fig. 3. Three-dimensional plot of the dependence on lnl of the polarization

efficiency, as expressed by h, for various values of ep. The sections of the h surface

with the planes of constant ep produce the peaks shown.
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Given a value of E0, for maximum Z there must be a value of t0,
equal to t0m, for which @Z=@t0 ¼ 0. From Eq. (18) it follows that

E2
E0

kTp

� �
¼

qt0m

Tp
: ð19Þ

The function Z becomes

ZðE0; t0Þ ¼
gkFp

kqt0

DTp

Tp
exp �

E0

kTp
�
t0m

t0

� �
: ð20Þ

This curve is shown in Fig. 6.
According to Eq. (20), ZðE0; t0Þ has a maximum value

Z0t ¼ ZðE
0; t0mÞ ¼

gkFp

ekqt0m

DTp

Tp
exp �

E0

kTp

� �
: ð21Þ

Using Eq. (19)

Z0t ¼
gkFp

ek

DTp

T2
p

e�E0=kTp

E2ðE0=kTpÞ
: ð22Þ

This is an exact expression. It can be greatly simplified by using
the approximation [5]

ðeþ2ÞeeE2ðeÞ � 1: ð23Þ

The unity on the right-hand side is actually 1.0124 for e¼ 10,
1.0038 for e¼ 20 and 1.0002 for e¼ 100. Eq. (23) becomes exact as
e-1. Using Eq. (23) in Eq. (22)

Z0t ¼
gkFp

ek

DTp

T2
p

2þ
E0

kTp

� �
; ð24Þ

showing that there is a linear relationship between Z0t and E0, to a
very good approximation. The linear relationship in Fig. 2c gave
the factor ð1:002=eÞ½1:861þðE0=kTpÞ� instead of ð1=eÞ½2þðE0=kTpÞ�

Fig. 4. (a) The dependence of the polarization efficiency, as expressed by h, on ep, for various values of l. (b) The values epm of ep, for which h is maximum for a given lnl,

and the linear relationship between epm and lnl. (c) The linear relationship between the maximum value hm of h, and the value of lnl at which the maximum appears.

(d) The linear relationship between the maximum value hm of h, and the value epm of ep at which the maximum appears.

Fig. 5. Three-dimensional plot of the dependence on ep of the polarization

efficiency, as expressed by h, for various values of l. The sections of the h surface

with the planes of constant lnl produce the peaks shown.
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in Eq. (24). This is considered to be a good agreement, within the
limitations of the approximation (23).

Dividing Eq. (20) by Eq. (21) we obtain the exact equation

ZðE0; t0Þ ¼ Z0te
t0m

t0

� �
exp �

t0m

t0

� �
: ð25Þ

The width of the distribution of t0 values can be found using
Eq. (25). The solutions of

ZðE0; t0Þ

Z0t
¼

1

e
ð26Þ

are found, by numerical methods, to be

t01
1

e

� �
¼

t0m

3:1462
and t02

1

e

� �
¼

t0m

0:15859
: ð27Þ

These give the values of t0 at which ZðE0; t0Þ falls to a fraction
of 1=e of its maximum value. The polarization procedure selects
mechanisms which, independently of E0, have values within a
factor of

t02
1

e

� �

t01
1

e

� � ¼ 3:1462

0:15859
¼ 19:84 ð28Þ

or, to a good approximation, a factor of 20. The differences in the
natural logarithms are

ln t01
1

e

� �
�ln t0m ¼�1:1462 and lnt02

1

e

� �
�lnt0m ¼ 1:8414:

ð29Þ

The corresponding range of the natural logarithms of the values of
t0 selected is

D ln t0
1

e

� �
¼ ln t02

1

e

� �
�lnt01

1

e

� �
¼ ln 19:839¼ 2:988; ð30Þ

or, to a good approximation

D ln t0
1

e

� �
¼ 3: ð31Þ

D ln t0ð1=eÞ is shown in Fig. 6.
If instead of the ratio ZðE0; t0Þ=Z0t ¼ 1=e we use ZðE0; t0Þ=Z0t ¼

1=2, we find

t01
1

2

� �
¼

t0m

2:6783
and t02

1

2

� �
¼

t0m

0:23196
; ð32Þ

t02ð
1
2Þ

t01ð
1
2Þ
¼ 11:55; ð33Þ

D ln t0ð
1
2 Þ ¼ ln t02ð

1
2 Þ�lnt01ð

1
2Þ ¼ 2:446; ð34Þ

or

D ln t0ð
1
2Þ ¼ 2:45: ð35Þ

This is the full width at half maximum (FWHM) of the distribution
of the ln t0 values of the polarized mechanisms.

5. The selectivity in E values, of the thermal sampling
technique

We now concentrate on a particular value of t0 ¼ t0
0 and

examine the distribution of the values of the activation energy
values E of the polarized mechanisms. To find the maximum value
of Z for this particular value of t0, we examine

@Z
@E
¼
gkFp

kq

DTp

Tp
�

1

kTp
þ

Tp

qt0
0

1

kTp
E1

E

kTp

� �� �
exp �

E

kTp
�

Tp

qt0
0

E2
E

kTp

� �� �
;

ð36Þ

where [5]

E1ðeÞ �
Z 1
e

e�z

z
dz; ð37Þ

is the first exponential integral, which has the properties

dE2ðeÞ
de

¼�E1ðeÞ; E2ðeÞ ¼ e�z�eE1ðeÞ; ðeþ1ÞeeE1ðeÞ � 1: ð38Þ

The unity on the right-hand side of the third equation is actually
1.0072 for e¼ 10, 1.0021 for e¼ 20 and 1.0001 for e¼ 100. Eq. (38)
becomes exact as e-1.

Given a value of t0, for maximum Z there must be a value of E,
equal to Em, for which @Z=@E¼ 0. From Eq. (36) it follows that

E1
Em

kTp

� �
¼

qt0
0

Tp
: ð39Þ

The function Z becomes

ZðE; t0
0 Þ ¼

gkFp

kqt0
0

DTp

Tp
exp �

E

kTp
�

Tp

qt0
0

E2
E

kTp

� �� �
: ð40Þ

This curve is shown in Fig. 7.
According to Eq. (39), ZðE; t0

0 Þ has a maximum value

Z0E ¼ ZðEm; t0
0 Þ ¼

gkFp

k

DTp

T2
p

1

E1ðEm=kTpÞ
exp �

Em

kTp
�

E2ðEm=kTpÞ

E1ðEm=kTpÞ

� �
:

ð41Þ

Using the second of Eq. (38)

Z0E ¼
gkFp

k

DTp

T2
p

1

E1ðEm=kTpÞ
exp �

expð�Em=kTpÞ

E1ðEm=kTpÞ

� �
; ð42Þ

which is an exact relationship. Using the approximation
ðeþ1ÞeeE1ðeÞ � 1 in Eq. (42) we obtain

Z0E ¼
gkFp

ek

DTp

T2
p

1þ
Em

kTp

� �
; ð43Þ

showing that there is a linear relationship between Z0E and
Em=kTp, to a good approximation. The linear relationship in
Fig. 4d gave the factor ð1:004=eÞ½1:798þðEm=kTpÞ� instead of
ð1=eÞ½1þðEm=kTpÞ� in Eq. (43). This is considered to be a good
agreement, within the limitations in accuracy of the third of
Eqs. (38).

The ratio of Eqs. (40) and (41) gives

ZðE; t0
0 Þ ¼ Z0E exp �

E

kTp
þ

Em

kTp
�

E2ðE=kTpÞ�E2ðEm=kTpÞ

E1ðEm=kTpÞ

� �
; ð44Þ

which, by use of the approximations ðeþ2ÞeeE2ðeÞ � 1 and
ðeþ1ÞeeE1ðeÞ � 1, leads to

ZðE; t0
0 Þ ¼ Z0E exp 1�epþepm�

ðepmþ1Þeepm

ðepþ2Þeep

� �
; ð45Þ

Fig. 6. The variation of Z with ln t0, for a given value of ep
0 ¼ E0=kTp, for dipoles

polarized at a temperature of Tp by the thermal sampling technique.
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where ep ¼ E=kTp and epm ¼ Em=kTp. We define

d� ep�epm; ð46Þ

in terms of which

ZðE; t0
0 Þ ¼ Z0E exp 1�d�

ðepmþ1Þ

ðepmþ2þdÞ
e�d

� �
: ð47Þ

The term ðepmþ1Þ=ðepmþ2þdÞe�d is important only for negative
values of d. In this case, and provided jdj is small, we may put
ðepmþ1Þ=ðepmþ2þdÞ � 1 and obtain

ZðE; t0
0 Þ ¼ Z0E expð1�d�e�dÞ ð48Þ

or

ZðE; t0
0 Þ ¼ Z0E exp½1þepm�ep�eepm�ep �: ð49Þ

This equation is for ðep�epmÞ what Eq. (25) is for ðln t0�ln t0mÞ.
The width of the distribution of E values can be found using

Eq. (48). For

ZðE; t0
0 Þ

Z0E

¼
1

e
; ð50Þ

the two solutions are

dL
1

e

� �
¼�1:1462 and dH

1

e

� �
¼ 1:8414; ð51Þ

which correspond to

epL
1

e

� �
¼ epmþdL

1

e

� �
¼ epm�1:1462 and

epH
1

e

� �
¼ epmþdH

1

e

� �
¼ epmþ1:8414 ð52Þ

The range of e values for the mechanisms polarized is

Dep
1

e

� �
¼ epH

1

e

� �
�epL

1

e

� �
¼ 2:988; ð53Þ

or, to a good approximation

Dep
1

e

� �
¼ 3; ð54Þ

independently of E0. This corresponds to an energy range

DE
1

e

� �
¼ 3kTp: ð55Þ

Depð1=eÞ is shown in Fig. 7.
If instead of the ratio ZðE; t0

0 Þ=Z0E ¼ 1=e we use
ZðE; t0

0 Þ=Z0E ¼ 1=2, we find

dLð
1
2 Þ ¼ �0:9852 and dHð

1
2Þ ¼ 1:4612; ð56Þ

which correspond to

epLð
1
2 Þ ¼ epmþdLð

1
2 Þ ¼ epm�0:9852 and

epHð12 Þ ¼ epmþdpHð
1
2Þ ¼ epmþ1:4612: ð57Þ

The range of e values for the mechanisms polarized is

Depð
1
2 Þ ¼ epHð

1
2 Þ�epLð

1
2Þ ¼ 2:446 ð58Þ

or

Depð
1
2Þ ¼ 2:45 ð59Þ

independently of E0. This corresponds to an energy range

DEð12Þ ¼ 2:45kTp: ð60Þ

This is the full width at half maximum (FWHM) of the distribution
of the E values of the polarized mechanisms.

We note the interesting facts that

Dep
1

e

� �
¼D lnt0

1

e

� �
� 3 and Dep

1

2

� �
¼D ln t0

1

2

� �
� 2:45:

ð61Þ

6. The line ð�lnt0Þ�E of maximum polarization efficiency for
given q and Tp

The relationships established in Section 3 are in a sense
universal, as they were derived from Eq. (17) which involves the
dimensionless variables h, ep ¼ E=kTp and l¼ Tp=qt0, and no other
parameters. In examining Z, it was found that the lines of
maximum polarization efficiency, with respect to t0 or E, are
given by conditions (19) and (39), respectively, as

E2ðepÞ ¼
qt0

Tp
and E1ðepÞ ¼

qt0

Tp
: ð62Þ

These give

�lnt0 ¼ ln q�ln Tp�ln E2ðepÞ and �lnt0 ¼ ln q�ln Tp�ln E1ðepÞ:

ð63Þ

The functions �ln E1ðeÞ and �ln E2ðeÞ, when plotted as func-
tions of e, are seen to be, to a good approximation, straight
lines that almost coincide (lower part of Fig. 8). For values
of e between 10 and 60, in steps of 1, the best linear fits are

Fig. 7. The variation of Z with ep, for a given value ln t0
0 of ln t0, for dipoles

polarized at a temperature of Tp by the thermal sampling technique.

Fig. 8. The variation with e of �ln E1ðeÞ and �ln E2ðeÞ. Both functions are fitted very

well by the straight line 2:42þ1:031e and are in fact indistinguishable in the lower

figure. In the upper figure, lines 1 and 2 give, respectively, the differences between

�ln E1ðeÞ and �ln E2ðeÞ and the values predicted by this linear approximation.
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found to be

�ln E1ðeÞ ¼ 2:389ð11Þþ1:0313ð3Þe and �ln E2ðeÞ ¼ 2:457ð11Þþ1:0303ð3Þe:

ð64Þ

We take the straight line with coefficients the average values of
those of these two equations, as representing both the functions
�ln E1ðeÞ and �ln E2ðeÞ:

�ln E1ðeÞ ��ln E2ðeÞ � 2:42þ1:031e: ð65Þ

The differences of the actual values of �ln E1ðeÞ and �ln E2ðeÞ from
those predicted by Eq. (65) are shown by curves 1 and 2,
respectively, in the upper part of Fig. 8. These differences drop
from 2.5% at e¼ 10, to 1% at e¼ 15 and to much smaller values as
e increases.

Using these relationships in Eqs. (63), we obtain

�ln t0 ¼ ln q�ln Tpþ2:42þ1:031ep ð66Þ

and, substituting ep ¼ E=kTp with 1=k¼ 11 604:5 K=eV

�ln t0ðsÞ ¼ 2:42þ ln qðK=sÞ�ln TpðKÞþ12 000
EðeVÞ

TpðKÞ
; ð67Þ

where the various quantities are expressed in the units shown in
parentheses. Given the values of q and Tp used in thermal
sampling, this equation gives the line on the E�ð�ln t0Þ plane
along which the polarization efficiency is maximum. In Fig. 9,
the lines corresponding to various values of Tp are shown, for
q¼ 0:1 K=s.

Also shown in Fig. 9, on the line for Tp ¼ 200 K, are the ranges
of E and lnt0 of the polarized dipoles, as predicted by Eqs. (55)
and (31), respectively. Fig. 10 shows this in more detail. For given
polarization temperature Tp and cooling rate q, the polarization
efficiency will be maximum along the straight line (thick line
in the figure) given by Eq. (67). Around every point ðE; ln t0Þ

of this line, the polarization efficiency has appreciable values in
the ranges between E�1:15kTpÞ and ðEþ1:84kTpÞ for energy E, and
between ð�ln t0�1:15Þ and ð�ln t0þ1:84Þ for ln t0 values. The
region defined in this way lies between the dashed lines for E and
the dotted lines for ln t0.

In a given sample, the dipoles which will be polarized will
depend on the values of E and of ln t0 of the dipoles in the sample.
Fig. 11 shows three such cases of samples which have dipoles
with distributions of ranges of E and of ln t0 values. The cooling

rate was taken to be �q¼�0:1 K=s. The dipoles which are
polarized at a particular polarization temperatures Tp are
determined by the section of the distribution by the line of
maximum polarization efficiency corresponding to that Tp. It
should be borne in mind that the polarization efficiency has
appreciable values in a region around the lines of maximum. This
region is indicated by a cross for a point on the Tp ¼ 200 K line.

In the first sample (abcd), the dipoles have a single value
of ln t0 ¼�30 and a range of energies between about 0.14 and
0.29 eV. The distribution is seen to be sampled for polarizing
temperatures between 50 and 100 K.

The second sample (efg), has dipoles of a single energy
E¼ 0:7 eV and ln t0 values between �22 and �37. This distribu-
tion is seen to be sampled for polarizing temperatures between
200 and 300 K.

In the third sample (hijklmno), the dipoles are distributed both
in energy E and ln t0 values, with a distribution which may be
taken to be a two-dimensional Gaussian, indicated by the ellipse
in the figure. It is seen that at each of the sampling temperatures

Fig. 9. The lines of polarization efficiency on the E�ð�ln t0Þ plane, for thermal

sampling at a cooling rate of �q¼�0:1 K=s and various polarization temperatures

Tp. The crossed lines on the straight line for Tp ¼ 200 K, show the ranges of E and

ln t0 of the polarized dipoles, as predicted by Eqs. (55) and (31), respectively.

Fig. 10. The ranges of values of E and of ln t0 for which the polarization efficiency

has appreciable values lie between the dashed lines for E and the dotted lines for

lnt0. These are defined, for a given point ðE; lnt0Þ on the line of maximum

polarization efficiency corresponding to a polarization temperature Tp and cooling

rate q, by the ranges between ðE�1:15kTpÞ and ðEþ1:84kTpÞ for energy E, and

between ð�ln t0�1:15Þ and ð�ln t0þ1:84Þ for ln t0 values.

Fig. 11. The polarization of dipoles in three samples. One (abcd), in which the

dipoles have a single value of ln t0 ¼�30 and a range of energies between about

0.14 and 0.29 eV. A second sample (efg), has dipoles of a single energy E¼ 0:7 eV

and ln t0 values between �22 and �37. A third sample (hijklmno), has dipoles

which are distributed both in energy E and ln t0 values, with a distribution which

may be taken to be a two-dimensional Gaussian, indicated by the ellipse in the

figure. The cooling rate in all cases shown was �q¼�0:1 K=s.
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150, 200, 250 and 300 K, dipoles within a range of both energies
and lnt0 values are polarized. The mid-points of these ranges are
marked, approximately, by the letters p, q, r and s in the figure.
For Tp ¼ 300 K, for example, the dipoles polarized have energies E

between 0.39 and 0.48 eV, and ln t0 values between �10 and
�13, the mid-point of these beings.

7. Thermal sampling and the compensation law

The selectivity of the thermal sampling technique could
account, at least in certain cases, for the manifestation of the
so-called ‘‘compensation law’’, i.e. a linear relationship between
the measured values of E and the corresponding values of ln t0.
This effect has been documented in the literature of TSDC for
many years now [9–18]. The two main schools of thought offer
explanations based on molecular structure considerations on one
hand and on the effect being a result of the experimental
technique used on the other. In all cases, the phenomenon
depends on the existence in the sample studied of relaxation
mechanisms having a distribution of E and ln t0 values. As an
example, such a distribution is shown in Fig. 12 by the ellipse
with axis the line abcde and center at the point O (E¼ 0:2 eV,
ln t0 ¼�25). The ellipse denotes the points at which the
distribution density falls to a value equal to, say, e�1=2 times its
maximum value at O. The lines of maximum polarization at the
temperatures of Tp equal to 50, 60, 80, 100 and 150 K are shown,
for a cooling rate of �q¼�0:1 K=s.

The range of energies sampled at each temperature is
approximately given by the sections of these straight lines lying
inside the ellipse. The mean energies of the mechanisms sampled
are given approximately by the points a, b, c, d and e, respectively.
For a fairly symmetric distribution, these points will approxi-
mately lie on a straight line and this fact will lead to a
manifestation of the so-called ‘‘compensation law’’. This would
provide an explanation for the observation of the linear relation-

ship between the values of E and ln t0 measured for the peaks
isolated by thermal sampling.

8. Conclusions

The TSDC polarization efficiency Z was studied for the method
of thermal sampling consisting of cooling the sample at a constant
rate �dT=dt¼ q and applying an electric field F for a time interval
Dt, while the sample is cooled from the temperature of Tp to
Tp�DTp. A delta-function polarization window was considered,
with DTp-0 while the product FDTp remains finite. The
expression derived for Z, Eq. (14), has maximum values with
respect to E and ln t0 which approximately lie on a straight line in
the E�ð�lnt0Þ plane, given by Eq. (67). The polarization efficiency
is appreciable for values of E and ln t0 near the line of maxima, in
the ranges between ðE�1:15kTpÞ and ðEþ1:84kTpÞ for E, and
between ð�ln t0�1:15Þ and ð�lnt0þ1:84Þ for ln t0. The selectivity
of the method, as expressed by the width of the Z function at a
point ðE; lnt0Þ in the directions of the E and ln t0 axes, is
DEð1=eÞ � 3kTp and D ln t0ð1=eÞ � 3. The effective fraction of
dipoles polarized will depend on the product of ZðE; t0Þ and the
distribution function of the E and ln t0 values in the sample. The
peaks isolated by the thermal sampling technique are far from
being either monoenergetic or from corresponding to a single
value of ln t0. In fact, those mechanisms present in the sample are
isolated, which, on heating, will result in peaks at approximately
the same peak temperature, and will appear as a single apparently
pure peak.

The selectivity of the thermal sampling technique provides an
explanation of the linear relationship observed between the
values of E and ln t0 measured for the peaks isolated by this
method, referred to in the literature as ‘‘the compensation law’’.
Under certain circumstances, a fairly linear relationship arises,
merely as a result of the method used and the distribution of the
relaxation parameters in the sample. More work should be done
along these lines, to test this claim, both experimentally and by
computer simulation techniques.
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